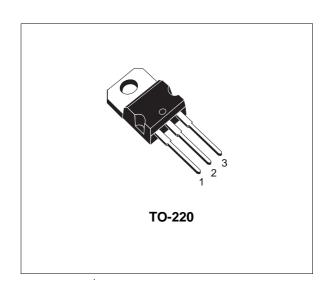
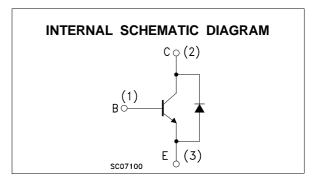


BUL38D

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- STMicroelectronics PREFERRED SALESTYPE
- HIGH VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- LOW BASE-DRIVE REQUIREMENTS
- VERY HIGH SWITCHING SPEED
- FULLY CHARACTERISED AT 125°C
- HIGH RUGGEDNESS
- INTEGRATED ANTIPARALLEL COLLECTOR-EMITTER DIODE


APPLICATIONS


- ELECTRONIC TRANSFORMERS FOR HALOGEN LAMPS
- SWITCH MODE POWER SUPPLIES

The BUL38D is manufactured using high voltage Multi Epitaxial Planar technology for high switching speeds and high voltage withstand capability.

The BUL series is designed for use in lighting applications and low cost switch-mode power supplies.

ABSOLUTE MAXIMUM RATINGS

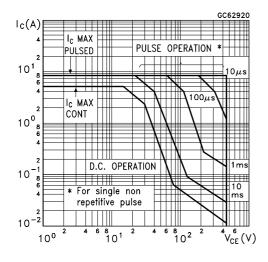
Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{BE} = 0)	800	V
V_{CEO}	Collector-Emitter Voltage (I _B = 0)	450	V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	9	V
Ic	Collector Current	5	V
I _{CM}	Collector Peak Current (t _p <5 ms)	10	А
I_{B}	Base Current	2	А
I_{BM}	Base Peak Current (t _p <5 ms)	4	А
P_{tot}	Total Dissipation at Tc = 25 °C	80	W
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

February 2003

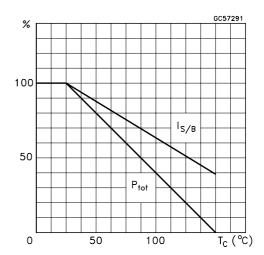
THERMAL DATA

R _{thj-case}	Thermal Resistance Junction-Case	Max	1.56	°C/W
R _{thj-amb}	Thermal Resistance Junction-Ambient	Max	62.5	°C/W

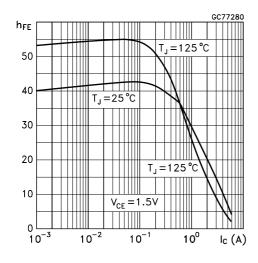
ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

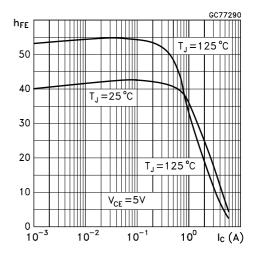

Symbol	Parameter	Test C	onditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 800 V V _{CE} = 800 V	T _c = 125 °C			100 500	μA μA
I _{CEO}	Collector Cut-off Current (I _B = 0)	V _{CE} = 450 V				250	μΑ
$V_{\text{CEO(sus)}^{*}}$	Collector-Emitter Sustaining Voltage (I _B = 0)	I _C = 100 mA	L = 25 mH	450			V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	I _E = 10 mA		9			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	I _C = 1 A I _C = 2 A I _C = 3 A	$I_B = 0.2 A$ $I_B = 0.4 A$ $I_B = 0.75 A$			0.5 0.7 1.1	V V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 1 A I _C = 2 A	I _B = 0.2 A I _B = 0.4 A			1.1 1.2	V V
h _{FE} *	DC Current Gain	I _C = 10 mA I _C = 0.5 A I _C = 2 A Group A Group B	V _{CE} = 5 V V _{CE} = 5 V V _{CE} = 5 V	10 13 22		60 23 32	
t _s t _f	RESISTIVE LOAD Storage Time Fall Time	$I_C = 2.5 \text{ A}$ $I_{B1} = -I_{B2} = 0.5 \text{ A}$ (see figure 2)	$V_{CC} = 150 \text{ V}$ $t_p = 30 \mu\text{s}$	1.0		2.2 0.8	μs μs
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time	$I_C = 2 A$ $V_{BE(off)} = -5 V$ $V_{CL} = 250 V$ (see figure 1)	$I_{B1} = 0.4 \text{ A}$ $R_{BB} = 0 \Omega$ $L = 200 \mu H$		1 55	1.8 100	μs ns
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time	I _C = 2 A V _{BE(off)} = -5 V V _{CL} = 250 V T _c = 125 °C	$I_{B1} = 0.4 \text{ A}$ $R_{BB} = 0 \Omega$ $L = 200 \mu\text{H}$ (see figure 1)		1.3 100		μs ns
V_{f}	Diode Forward Voltage	I _C = 2 A				1.5	V

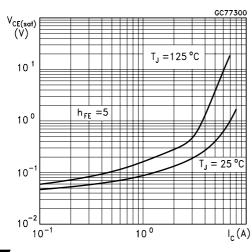
* Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.

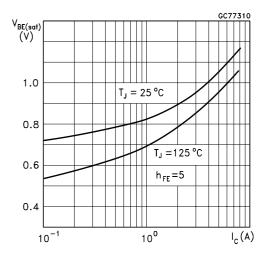

The product is pre-selected in DC current gain (Group A and Group B). STMicroelectronics reserves the right to ship either groups according to production availability. Please contact your nearest STMicroelectronics sales office for delivery datails.

2/7

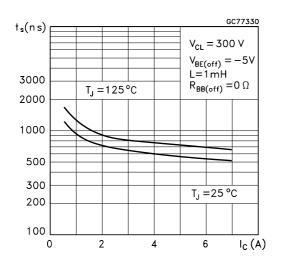

Safe Operating Area


Derating Curve

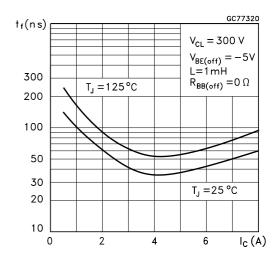

DC Current Gain


DC Current Gain

Collector-Emitter Saturation Voltage



Base-Emitter Saturation Voltage



477

Inductive Load Storage Time

Inductive Load Fall Time

Reverse Biased SOA

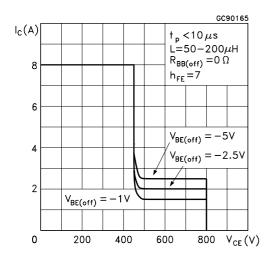
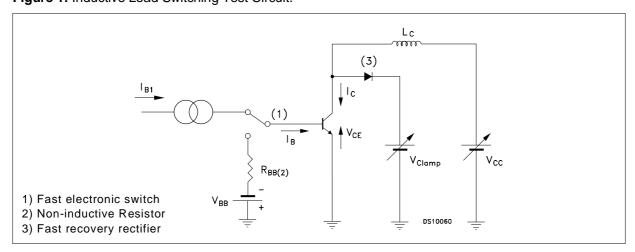
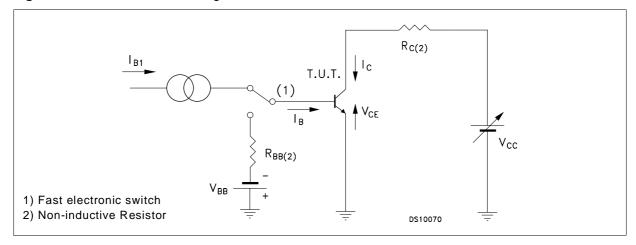




Figure 1: Inductive Load Switching Test Circuit.

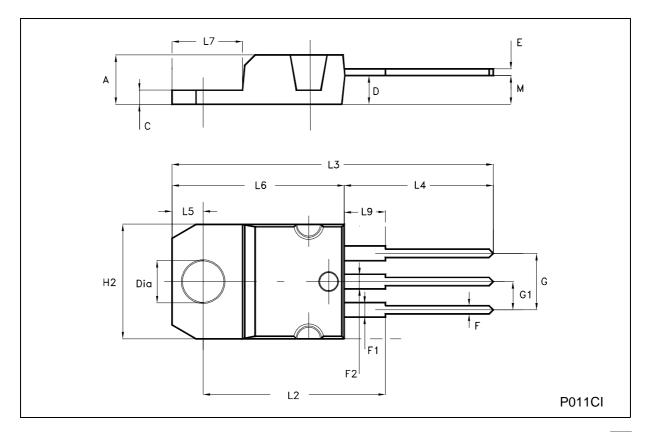

4/7

Figure 2: Resistive Load Switching Test Circuit.

TO-220 MECHANICAL DATA

DIM.	mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.052
D	2.40		2.72	0.094		0.107
E	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.202
G1	2.40		2.70	0.094		0.106
H2	10.00		10.40	0.394		0.409
L2		16.40			0.645	
L4	13.00		14.00	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.20		6.60	0.244		0.260
L9	3.50		3.93	0.137		0.154
М		2.60			0.102	
DIA.	3.75		3.85	0.147		0.151

47/

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2003 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

